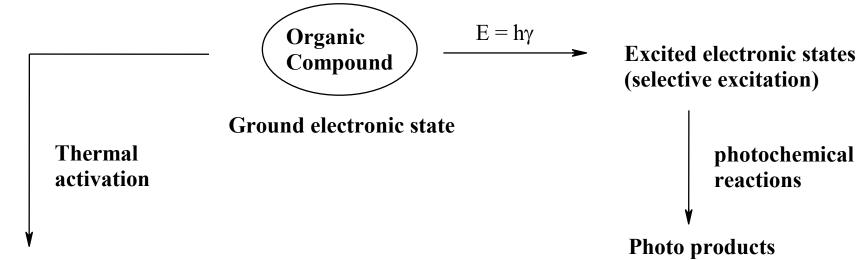

Chem. 862

Photochemistry

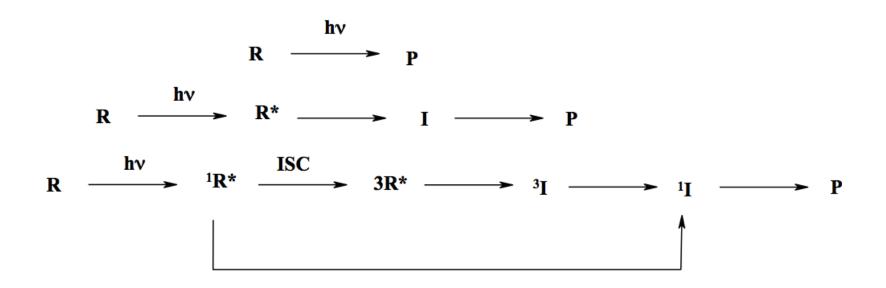


Contents expected on this course will be:

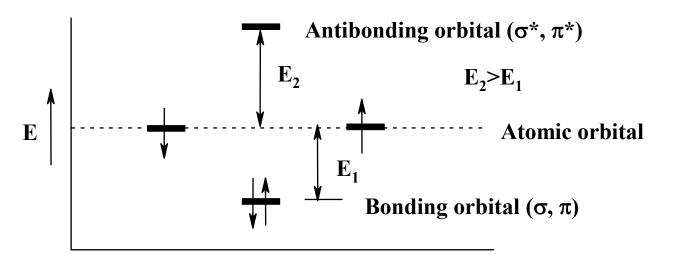
- 1. Principles of photochemical reactions
- 2. Excited states and their properties
- 3. Several useful photochemical reactions and their applications in organic synthesis (isomerization, Patterno-Buchi reaction, Norrish type I and II reaction, Photoreduction, Rearrangements: di-π-methane, oxa di-π- and aza di-π-methane rearrangements, Photocycloaddition
- 4. Photochemistry of biological systems
- 5. Pericyclic reactions

Recommended books:

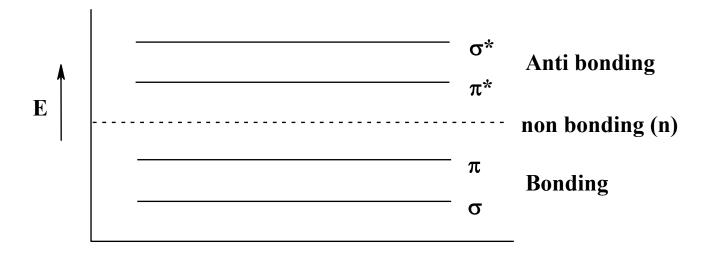
- CRC Handbook of Photochemistry and Photobiology. Eds by. William M. Horspool and Pill-Soon Song. 1994. CRC Press. ISBN: 0-8493-8634-9.
- Synthetic organic photochemistry. Eds by. William M. Horspool, Plenum press. 1984. ISBN: 0-306-41449-X.
- Organic Chemistry by Prashar.
- https://www2.chemistry.msu.edu/faculty/reusch/Virt TxtJml/photchem.htm

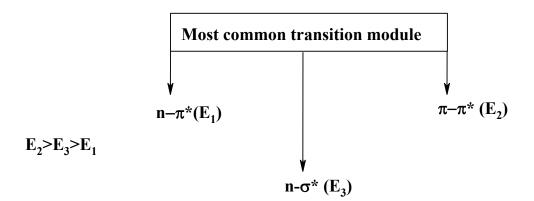


Thermally activated state (change in vibrational, rotational and transtational energy levels which is governed by Boltzman distribution law)

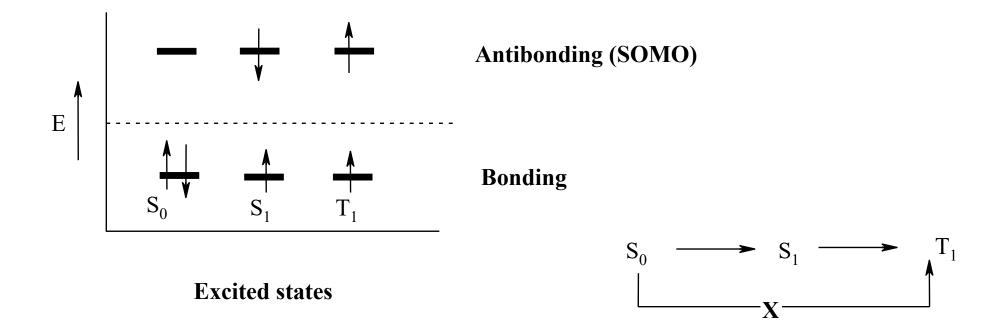

two pathways are entirely different hence the reaction outcome

Formation of new chemical entity


Events in a photochemical reaction:


Products? Ionic or radical reaction? Spin orientations of excited states? Intermediates involved? Orbitals involved?

Relative energies of atomic and molecular orbitals



Relative energies of σ , π and n MOs

Absorption maxima for few molecules and functional groups

Molecule	Transition	λ_{\max} (nm)	E (Kcal/mol)
Iodobutane	n-σ*	224	127.7
Ethylene	π – $\pi*$	165	173.3
Ethyne	π-π*	173	165.3
Acetone	π – π *	150	190.7
	n-σ*	188	152.1
	n-π*	279	102.5
Butadiene	π – π *	217	131.8
Acrolein	π – π *	210	136.2
	n-π*	315	90.8
Functional grou	p		
RCH = CHR		165	173.3
		193	148.2
Alkyne		173	165.3
Ketones		188	152.1
		279	102.5
Aldehydes		290	98.6
Carboxylic acids	8	<205	<137.5

 S_0 : Ground state (spin paired, Pauli exclusion principle)

S₁: Excited singlet state

T₁: Excited triplet state (spin inversion)

T_1 is more stable than S_1 (parallel spin, lesser inter-electronic repulsion)